S-integrator End to End Guide, Version 1.0

 November 4, 2003

S-integrator 1.0

End to End Guide

DRAFT

Version 0.90

November 4, 2003

by Wayne M Osse

Table of Contents

 1 Introduction
5

 2 Quick Start
6

 3 Installation
7

3.1.Requirements
7

3.1.1.Software
7

3.1.2.Hardware
7

3.2.Downloading
7

3.2.1.Release Builds
7

3.2.2.Intermediate Builds
8

3.2.3.Directories
8

3.3.Installing
8

3.3.1.Java Runtime Environment
9

3.3.2.Database
9

3.3.3.JDBC driver for your database
9

3.3.4.S-integrator
9

 4 Running
10

4.1.Startup
10

4.1.1.Start via an environment variable
10

4.1.2.Start by modifying your current working directory
10

4.2.Shut Down
10

4.3.Testing
10

4.3.1.Admin Dashboard
11

4.3.1.1.Startup
11

4.3.1.2.Logging In
11

4.3.1.3.Checking Statistics
11

4.3.1.4.Getting a Statistics Report
11

4.3.1.5.Shut Down the Server
11

4.3.1.6.List Active Services
11

4.3.1.7.Testing a SOAP Service
12

4.3.2.Web Browser
12

4.3.2.1.Running the HelloWorld Service
12

4.3.3.Web Phone
12

4.3.4.Program the Client API
13

4.4.Built-in Service Stores
13

4.4.1.system
13

4.4.2.adminui
13

4.4.3.mainframetest
13

4.4.4.soaptest
13

4.4.5.public
13

4.5.Troubleshooting
13

 5 Configuration
15

5.1.Server Configuration
15

5.1.1.Server Configuration File – server.xml
15

5.1.1.1.Server Attributes
15

5.1.1.2.Server Sample
15

5.1.1.3.Authentication Attributes
15

5.1.1.4.Authentication Sample
15

5.1.1.5.Logging Server Attributes
15

5.1.1.6.Logging Server Sample
15

5.1.1.7.Security Service Attributes
15

5.1.1.8.Security Service Sample
16

5.1.1.9.Parser Attributes
16

5.1.1.10.Log Attributes
16

5.1.1.11.Log Samples
16

5.1.2.Service Stores Configuration File – stores.xml
17

5.1.2.1.Service Store Attributes
17

5.1.2.2.Service Store Sample
17

5.2.Service Store Configuration
17

5.2.1.Service Description Files – *Services.xml, *.wsdl
17

5.2.1.1.Native Service Description Files
17

5.2.1.2.Native Service Description Sample
17

5.2.1.3.WSDL Files
18

5.2.2.Service Store Configuration File – store.xml
18

5.2.2.1.HTTP Entrances
18

5.2.2.2.JDBC Destinations
18

5.2.3.Multiple S-integrator Instances
19

 6 Service Model
20

6.1.Services
20

6.2.Service Types
20

6.2.1.Atomic ServiceTM
20

6.2.2.Service AgentTM
20

6.2.3.Remote ServiceTM
20

6.2.4.Service FlowTM
20

6.3.Service Inputs and Outputs - Databags
20

 7 Developing Services
22

7.1.Atomic Services
22

7.2.Service Agents
23

7.3.Remote Services
24

 8 Integrating Software and Systems
25

8.1.Databases
25

8.2.Mainframes
25

8.3.Web Services
25

8.4.Listeners
25

8.4.1.TCP/IP
25

8.4.1.1.IP Host and Address Banning
25

8.5.Inbound Adapters
25

8.5.1.HTTP Inbound Adapter
25

8.5.1.1.IP Host and Address Banning
26

8.5.1.2.Content Filtering
26

8.5.2.SOAP Inbound Adapter
26

8.5.2.1.IP Host and Address Banning
26

8.5.2.2.Content Filtering
26

8.6.Outbound Adapters
26

8.6.1.JDBC Outbound Adapter
26

8.6.2.Mainframe Outbound Adapter
26

8.7.Protocol Support
27

8.7.1.SMTP
27

8.7.2.FTP
27

 9 Deploying Services
28

9.1.Initial Deployment
28

9.2.Hot Deployment
28

 10 System Services
29

10.1.Authentication, Registration and Session Management
29

10.1.1.Authentication
29

10.1.2.Registration
29

10.1.3.Session Management
29

10.1.4.Service Package Authorization
29

10.1.5.Service Authorization
29

10.1.6.Content Authorization
29

10.2.Authorization
29

10.3.Content Management
29

10.4.Configuration File Management
29

10.5.Administration
29

10.5.1.Server Health
30

10.5.2.Server Management
30

10.5.3.Scheduling
30

10.5.4.Service Management
30

10.5.5.Mail
30

10.5.6.Web Server
30

 11 Client API
31

11.1.Interface
31

11.2.Sample
31

Introduction

If you are in a hurry, just jump to the “Quick Start” section below and get going!

S-integrator is a open source, service-oriented integration server. Well, It is really a next-generation application server. S-integrator is service container that empowers services with inherent connectivity, integration and security capabilities. This is achieved by isolating the technology that makes a service connected, reusable and secure from the service implemntation. Think about that. A flexible service-oriented architecture must accommodate different inbound and outbound protocols and technologies, including web services. If you use S-integrator to write a service and expose it as a web service, and later want to provide access to it via another protocol or technology, you do not need to change your code, just add the outbound adapter and destination for that protocol or technology! A more likely scenario is that you have an existing service in an external system and you want to make it available initially through a legacy protocol, and then later expose it as a web service. This should be easy to do.

The ability to integrate is often hindered by obstacles that are not obvious. Integration products that require a multitude of other software packages, significant resources, a high price and/or special development licenses all contribute to slowing integration from taking palce, where the rubber meets the road. S-integrator provides a model that can accommodate a myriad of architectures that would have preciously been prohibitive due to cost and/or resource requirements. S-integrator is license under the GNU Lesser General Public License (LGPL), has a small footprint and very few requirements. This facilitates Rapid IntegrationTM, which our company has been providing to customers for almost 15 years.

Just a few notes for those interested. The name S-integrator represents “Service Integrator”. It is written completely in Java, except for one adapter written in 'C' (the Mainframe Adapter).

Quick Start

Experienced developers can follow the “Quick Start” instructions below to get up and running quickly.

1. Download and install a Java runtime, like JRE 1.2.2 or JSRE 1.4.2
2. Download and install MySQL if you don't have a database and JDBC driver.

3. Download and unpack the latest S-integrator runtimes

4. Adjust the JDBC destinations named SYSTEMDB and LOGINDB in

si-1.0x/servicestores/system/Svc-inf/store.xml

5. Open a shell prompt and change to the S-integrator “/si-1.0x/bin” directory

6. Set the SI_HOME environment variable to the S-integrator install directory

set SI_HOME=c:\si-1.04

(Windows)

SI_HOME=/usr/localbin/si-1.04
(Unix, Linux)

7. Start S-integrator by running the shell command for your platform:

%SI_HOME%\bin\startup
(Windows)

$SI_HOME/bin/startup.sh
(Unix)

sh $SI_HOME/bin/startup.sh
(Linux)

8. Go to http://localhost:8080 in a web browser. If the web page loads, you have already executed a series of S-integrator services. Then log in as administrator with user id “si” and password “si”.

Installation

Experienced developers can follow the “Quick Start” instructions in the previous section to get up and running quickly. Detailed installation information and instructions are provided here.

Requirements

1.1.1. Software

Windows, Linux or Unix

· Java Runtime 1.2.2 or higher

· A Database

– MySQL for example

· A JDBC Driver for the Database
– MySQL JDBC Drivers included

· TCP/IP

· Optional

· JSSE for Java 1.2.2

- HTTPS support in AdminUI

1.1.2. Hardware

· Memory

· per Server Instance

16-32 MB

· per Service Store

Future

· per Active Service

Future

· HTTP Inbound Adapter

Future

· SOAP Inbound Adapter
Future

· JDBC Outbound Adapter
Future

· Mainframe Outbound Adapter
Future

· Disk Space

· Installation

1 MB

· per Server Instance

1 MB

· Event Logging (Errors)

1 MB

· Audit Logging (per Resquest)
input + output + ~256

Downloading

1.1.3. Release Builds

Release Builds of S-integrator are released periodically and announced. Each release build resides in its own directories and is available in zip and gzip formats. For example, the S-integrator 1.04 release is available at:

Binary: ftp://ftp.s-integrator.org/s-integrator-1.00/release/v1.04/

HYPERLINK "ftp://ftp.s-integrator.org/s-integrator-1.00/release/v1.04/"

§Source: ftp://ftp.s-integrator.org/s-integrator-1.00/release/v1.04/src/
1.1.4. Intermediate Builds

Intermediate Builds of s-integrator are built periodically from the most

recent sources. These builds are available at:

Binary: ftp://ftp.s-integrator.org/s-integrator-1.00/intermediate/
Source: ftp://ftp.s-integrator.org/s-integrator-1.00/intermediate/src/
1.1.5. Directories

LICENSE

LGPL Software License for this release

README.txt

Readme file

RELEASE-NOTES-*.txt

Release Notes for this release

RUNNING.txt

Install & run instructions the server

bin/

Binary executables and scripts

classes/

Global classes

conf/

Configuration files

contentfilters/

Content filters for included Http adapter

lib/

Global classes in JAR files

logs/

Destination directory for log files

servicestores/

Service stores included with S-integrator

servicestores/adminui

Administration web server Service Store

servicestores/system

System Service Store

servicestores/mainframetest
Mainframe Adapter test Service Store

servicestores/soaptest

SOAP Adapter test Service Store

servicestores/public

Public quick start Service Store

stats/

Contains statistics when used

temp/

Scratch directory for temporary files

work/

Scratch directory for working files

If you wish to build the S-integrator server from a source distribution, please consult the documentation in "BUILDING.txt" in that distribution.

If you wish to install and run a binary distribution of the S-integrator server, please consult the documentation here or the "RUNNING.txt" in the distribution.

Installing

S-integrator is implemented entirely in Java 1.2.2. In order to install and run this integration broker and service container, you must do the following:

1.1.6. Java Runtime Environment

1. Download a Java Runtime Environment (JRE) version 1.2.2 or later from http://java.sun.com/j2se/ (like JRE 1.2.2 or JSRE 1.4.2)

2. Install the JRE according to the instructions included with the release.

1.1.7. Database

1. Download MySQL from http://www.mysql.com/downloads/mysql-4.0.html if you don't have a database and JDBC driver

2. Install the database according to the instructions included with the release

1.1.8. JDBC driver for your database

1. If you use the MySQL, the 3.x and 4.x JDBC drivers for MySQL are included, so you may skip this step.

You can download the MySQL JDBC driver from http://www.mysql.com/downloads/api-jdbc.html

2.

HYPERLINK "http://www.mysql.com/downloads/api-jdbc.html"

§
3. Install the JDBC driver according to the instructions included with the release.

1.1.9. S-integrator

1. Download a binary distribution of S-integrator from http://www.s-integrator.org/downloads.jsp
· On a Windows platform, you will need si-1.0x.zip

· On a Unix platform, you will need si-1.0x.tar.gz

2. Unpack the binary distribution into a convenient location so that the distribution resides in its own directory (conventionally named "S-integrator-1.0"). For the purposes of the remainder of this document, the symbolic name $SI_HOME or %SI_HOME% are used to refer to the full pathname of the release directory.

3. If you are using MySQL, from the command line, run the following command (%SI_HOME% is the S-integrator installation directory)

mysql < %SI_HOME%/bin/sidb.sql

4. Update the LOGINDB and SYSTEMDB destinations in the store.xml configuration file in the %SI_HOME%/servicestores/system/Svc_inf/ directory for the database and JDBC driver you are using.

Running

Startup

There are two ways S-integrator 1.0 can be started:

1.1.10. Start via an environment variable

1. Set the environment variable SI_HOME to the installation path of S-integrator 1.0

2. Execute the shell command

%SI_HOME%\bin\startup
(Windows)

$SI_HOME/bin/startup.sh
(Unix)

1.1.11. Start by modifying your current working directory

1. Execute the following shell commands

cd %SI_HOME%\bin
(Windows)

startup

(Windows)

cd $SI_HOME/bin
(Unix)

/startup.sh

(Unix)

Shut Down

There are two ways to stop S-integrator 1.0:

· Via administrator web pages by logging in with the administrator id

· Via the administrator GUI by logging in with the administrator id

Testing

You can test the S-integrator Installation in a number of ways.

1.1.12. Admin Dashboard

1.1.12.1. Startup

Start the Admin UI Dashboard by doing the following:

a) Open a prompt and change to the S-integrator “bin” subdirectory

b) Set the SI_HOME environment variable to the install directory

c) Start AdminUI by running adminui.bat or adminui.sh

All of the following service calls require this log in to occur first.

1.1.12.2. Logging In

1. Type in the User Id of “si” and Password of “si”

2. Click on the “Login” button

3. You will see login information in the “Response” window

1.1.12.3. Checking Statistics

1. In the “Service” list, choose the “LocalService” service

2. In the “Method” list, choose the “STAT” method

3. Click on the “Run” button

4. You will see statistics information in the “Response” window

1.1.12.4. Getting a Statistics Report

1. In the “Service” list, choose the “LocalService” service

2. In the “Method” list, choose the “STATSREPORT” method

3. Click on the “Run” button

4. You will see a statistics report in the “Response” window

1.1.12.5. Shut Down the Server

1. In the “Service” list, choose the “LocalService” service

2. In the “Method” list, choose the “SHUTDOWN” method

3. Click on the “Run” button

4. The server will shut down in five seconds

1.1.12.6. List Active Services

1. In the “Service” list, choose the “LocalService” service

2. In the “Method” list, choose the “LISTACTIVESERVICES” method

3. Click on the “Run” button

4. You will see a list of active services in the “Response” window

1.1.12.7. Testing a SOAP Service

1. In the “Protocol” list, choose the “TCP” service

2. In the “Service” text box type “SP_Test”

3. In the “Method” text box, type “run”

4. In the “Port” text box type “8083” (soaptest listens on port 8083)

5. In the “Request Format” list, choose “FILE”

6. In the “Response Format” list, choose “FILE”

7. Click on the “Run” button

8. You should see SOAP response message in the “Response” window.

1.1.13. Web Browser

The adminui Service Store's WB_WebServer service implements S-integrator's own embedded web server. Go to http://localhost:8080 in a web browser. If the web page loads, you have already executed a series of S-integrator services (otherwise see the Troubleshooting chapter). Then log in as administrator with user id “si” and password “si”

1.1.13.1. Running the HelloWorld Service

5. Go to http://localhost:8083

6. Enter your name

7. Click on the “Submit” button

8. You will see the hello message in the “Service Results” table at the bottom of the page. Notice that you are an anonymous user. Services in the Public Service Package are available for anyone to run and do not require you to log in as a user. This is not true for administrative services.

1.1.14. Web Phone

The adminui Service Store's WB_WebServer service again provides web access. This test requires you to change the S-integrator adminui Service Store to listen on HTTP on an address that can be accessed from the Internet. Be sure to change your administrator password using HTML on the adminui Service Store first.

Go to http://localhost:8080/login.wml using a web phone that supports WML. If the web page loads, you have already executed a series of S-integrator services (otherwise see the Troubleshooting chapter). Then log in as administrator with user id “si” and password “si”

1.1.15. Program the Client API

The Client API provides the developer with a very easy to use set of classes to call S-integrator services. See the Client API chapter.

Built-in Service Stores

1.1.16. system

The system Service Store contains services used by S-integrator itself and for managing the system.

1.1.17. adminui

The adminui Service Store contains services monitoring, managing and testing the system. It includes the WB_WebServer service which implements a simple web server for embedded S-integrator management.

1.1.18. mainframetest

The mainframetest Service Store contains sample services for exploring the Mainframe Outbound Adapter.

1.1.19. soaptest

The soaptest Service Store contains sample services for exploring the SOAP Inbound Adapter.

1.1.20. public

The public Service Store provides a prebuilt Service Store to make developing services easy.

Troubleshooting

· The most common issue is when another web server has laid claim to port 2050 (or 8080 for the administrative web service). This is the default HTTP port that S-integrator attempts to bind to at startup. To change this, open the file $SI_HOME/servicestores/system/Svc-inf/store.xml ($SI_HOME/servicestores/adminui/Svc-inf/store.xml for 8080) and search for '2050'. Change it to a port that isn't in use, and is greater than 1024, as ports less than or equal to 1024 require superuser access to bind to.

Restart S-integrator. Be sure that you replace the "2050" in the URL you're using to access S-integrator (or ”8080” for the admin ui). For example, if you change the port to 2000, you would request the URL http://localhost:2000/.

· An "out of environment space" error when running the batch files in Win9X/ME-based operating systems.

Right-click on the STARTUP.BAT file. Click on "Properties" then on the "Memory" tab. For the "Initial environment" field, enter in something like 4096.

After you click apply, Windows will create shortcuts in the directory with which you can use to start and stop the container.

· The 'localhost' machine isn't found. This could happen if you're behind a proxy. If that's the case, make sure the proxy configuration for your browser knows that you shouldn't be going through the proxy to access the "localhost" machine.

In Netscape, this is under Edit/preferences -> Advanced/proxies, and in Internet Explorer, Tools -> Internet Options -> Connections -> LAN Settings.

Configuration

Server Configuration

1.1.21. Server Configuration File – server.xml

The server configuration file is located in the si-1.0x/conf directory and is called server.xml.

1.1.21.1. Server Attributes

operatingMode “TEST” (always)

storeBase Service Store subdirectory

workDirectory Working file subdirectory

tempDirectory Temporary file subdirectory

debug ”All”, “Warnings” or “Errors”

1.1.21.2. Server Sample

<Server

operatingMode="TEST"

storeBase="servicestores"

workDirectory="work"

tempDirectory="temp"

debug="All">

1.1.21.3. Authentication Attributes

serviceName “SA_Session” - Authentication service

1.1.21.4. Authentication Sample

<Authentication serviceName="SA_Session"></Authentication>

1.1.21.5. Logging Server Attributes

ipAddress host name to accept logging requests

ipPort port to accept logging requests

socketTimeout Timeout for logging requests

1.1.21.6. Logging Server Sample

<LogServer

ipAddress="localhost"

ipPort="2060"

socketTimeout="0">

</LogServer>

1.1.21.7. Security Service Attributes

adminUserId admin user id

adminPassword admin password

serviceBrokerProtocol Protocol to use for security services

serviceBrokerAddress Security Service Broker host name

serviceBrokerPort Security Service Broker port

1.1.21.8. Security Service Sample

<ServiceSecurity

adminUserId="si"

adminPassword="si"

serviceBrokerProtocol="HTTP"

serviceBrokerAddress="localhost"

serviceBrokerPort="2050">

</ServiceSecurity>

1.1.21.9. Parser Attributes

The parser entry is currently unused.

1.1.21.10. Log Attributes

Event and Audit logs are provided for each Service Store. The built-in Logging Server provides a TCP listener for logging. Service Stores can alternatively use a file based log.

name Log file name prefix

type “event” or “audit”

className Log implementation class

locationType “tcp” or “file”

location “address:port” or unused

directory “directory within Service Store”

debug ”All”, “Warnings” or “Errors”

1.1.21.11. Log Samples

<Log

name="system_EventLog"

type="event"

className="com.indigotp.is.Log"

locationType="tcp"

location="localhost:2060"

directory="logs"

debug="Errors">

</Log>

<Log

name="system_AuditLog"

type="audit"

className="com.indigotp.is.Log"

locationType="tcp"

location="localhost:2060"

directory="logs"

debug=”Errors">

</Log>

<Log

name="soaptest_EventLog"

type="event"

className="com.indigotp.is.Log"

locationType="file"

location="."

directory="logs"

debug="All">

</Log>

1.1.22. Service Stores Configuration File – stores.xml

The Service Stores configuration file is located in the si-1.0x/conf directory and is called stores.xml.

1.1.22.1. Service Store Attributes

name Service Store name

storeBase Service Store subdirectory under the

 servicestores subdirectory

1.1.22.2. Service Store Sample

<ServiceStore

name="system"

storeBase="system">

</ServiceStore>

Service Store Configuration

1.1.23. Service Description Files – *Services.xml, *.wsdl

The Service Store Services configuration files are located in the si-1.0x/servicestores/servicestorename/Svc-inf directory. Service description files must contain entries for services before they can be invoked. There are two types of service description files, S-integrator native and WSDL.

1.1.23.1. Native Service Description Files

NAME Service name

DESCRIPTION Service Store text description

TYPE “Atomic”, “Agent”, “Remote” or “Flow”

METHODS Methods, descriptive

VERSION Service version

INTEREST Area of interest for Service

DESTINATION Class name of Service

PACKAGE Service Package name used for authorization

1.1.23.2. Native Service Description Sample

<SERVICES>

<SERVICE>

<NAME>UT_Utils</NAME>

<DESCRIPTION>Utilities Service Agent</DESCRIPTION>

<TYPE>Agent</TYPE>

<METHODS>run</METHODS>

<VERSION>1.0</VERSION>

<INTEREST>Utilities</INTEREST>

<DESTINATIONNAME>UT_Utils</DESTINATIONNAME>

<PACKAGE>Public</PACKAGE>

</SERVICE>

</SERVICES>

1.1.23.3. WSDL Files

WSDL files are in the WSDL format.

1.1.24. Service Store Configuration File – store.xml

The Service Store configuration file is located in the si-1.0x/servicestores/servicestorename/Svc-inf directory.

1.1.24.1. HTTP Entrances

The Service Store's configuration file, store.xml, is located in the Svc-inf directory of the Service Store. It contains Entrances that describe what addresses to listen on. To listen on a TCP address or port different from the default, just change localhost:2050 to the address:port you want. Keep in mind that using a port below 1024 may require administrative rights on your machine. The system Service Store Entrance is shown below.

<Entrance clientAdapter="HTTP">

<Address location="localhost:2050"></Address>

</Entrance>

You will have to restart S-integrator for the changes to take effect.

1.1.24.2. JDBC Destinations

JDBC Destinations have the following attributes in the Service Store's configuration file, store.xml, located in the Svc-inf directory of the Service Store

name Logical Destination Name

serverAdapter “JDBC” (always)

driverClassName JDBC Driver Class Name

connectionString JDBC Connection String

user Database User Id

password Database Password

compareType “STRCMP” (only for MySQL)

Below are the default JDBC Destination entries in the system Service Store:

<Destination

name="LOGINDB"

serverAdapter="JDBC"

driverClassName="org.gjt.mm.mysql.Driver" connectionString="jdbc:mysql:///si?user=siadmin&password=******" user="siadmin"

password="******"

compareType="STRCMP">

</Destination>

<Destination

name="SYSTEMDB"

serverAdapter="JDBC"

driverClassName="org.gjt.mm.mysql.Driver" connectionString="jdbc:mysql:///si?user=siadmin&password=******" user="siadmin"

password="******"

compareType="STRCMP">

</Destination>

1.1.25. Multiple S-integrator Instances

To configure multiple S-integrator 1.0 instances, follow these steps.

In many circumstances, it is desirable to have a single copy of an S-integrator 1.0 binary distribution shared among multiple users on the same server. To make this possible, you must configure a SI_HOME environment variable that points to a directory that is unique to your instance.

When you do this, S-integrator 1.0 will calculate all relative references for files in the following directories based on the value for SI_HOME:

· conf

- Server configuration files (server.xml too)

· logs

- Log and output files

· servicestores
- Automatically loaded service stores

· temp

- Temporary files directories for service stores

· work

- Working directories for service stores

Service Model

Services

A service contains one or more methods and resides within a Service StoreTM. A Service Store has Service Store EntrancesTM and Service Store DestinationsTM. Services are processed as follows:

· An Entrance accepts a service request and passes it to the Service Store that hosts the service

· The Service Store calls the service method with the input parameters

· The service method processes the input parameters and sets output parameters

· The Service Store passes the output parameters back to the Entrance

· The Entrance sends back the service response to the caller

Service Types

There are four types of service as described below.

1.1.26. Atomic ServiceTM

A stateless method within a Java class

1.1.27. Service AgentTM

A method with a Java class that does loads once and stays loaded. A smart or intelligent service.

1.1.28. Remote ServiceTM

A service that represents an external system call. A Remote Service uses the outbound adapter that the Destination is bound to

1.1.29. Service FlowTM

A sequence of services, each of which can be of any service type, including another Service Flow

Service Inputs and Outputs - Databags

S-integrator services access input and output parameters through input and output databags. It is the responsibility of the inbound adapter (Entrance) to convert adapter or protocol specific data to input and output databags so that the service has a simple, consistent interface to parameters. Databags are associative arrays with simple access methods. Normally, a service sets a number of output parameters using service-specific naming.

The “Body” output parameter can be used to package an entire response for convenience. It is also used when calling a Remote Service via a destination. This provides a standard interface for interacting with external systems through outbound adapters.

Developing Services

Services can optionally be static, but there is no requirement to be.

New methods have been added to simplify input and output parameter access.

String service.getInputParameter (String strName) ;

String service.setOutputParameter (String strName

 , String strValue

) ;

Object service.setOutputParameter (String strName

 , Object objValue

) ;

Previously, the following techniques were used to access input and output parameters.

service.databagInput.getDataString (String strName

 , String strDefaultValue

 , boolean fUseDefaultValue

) ;

service.databagInput.getData (String strName) ;

service.databagOutput.add (String strName

 , Object objValue

) ;

Atomic Services

Here is the simplest form of an S-integrator service.

import com.indigotp.is.*;

public class HelloWorld

{

 public Service helloWorld (Service service)

 {

service.setOutputParameter ("Body", "Hello World!") ;

return service ;

 }

}

Now allow for an input parameter and check for errors. If a failure occurs, add an event log entry and set the result accordingly.

import com.indigotp.is.*;

public class HelloWorld

{

 public Service helloWorld (Service service)

 {

String strName = null ;

strName = service.getInputParameter ("Name") ;

if (strName != null) {

service.setOutputParameter ("Body"

 , "Hello from " + strName

) ;

}

else {

String strErrorCode = "300" ;

String strErrorText = "helloWorld - Name not provided" ;

service.log (strErrorText, 1) ;

service.setResult ("300", strErrorText) ;

}

return service ;

 }

}

Service Agents

A Service Agent implements “Thread” and the init() method in order to get the configuration for the service. Atomic services also get access to the service configuration, but it is provided as the ”ConfigData” input parameter to each service invocation. Service Agents otherwise look exactly like Atomic Services. Here is a sample of an S-integrator service agent.

import com.indigotp.is.*;

public class HelloWorld extends Thread

 public static Service init (Service service)

 {

 Properties propConfig = service.getConfiguration () ;

 }

 public Service helloWorld (Service service)

 {

service.setOutputParameter ("Body", "Hello World!") ;

return service ;

 }

}

Remote Services

A Remote Service is Agent implements “Thread” and the init() method in order to get the configuration for the service. Atomic services also get access to the service configuration, but it is provided as the ”ConfigData” input parameter to each service invocation. Service Agents otherwise look exactly like Atomic Services. Here is a sample of an S-integrator service agent.

import com.indigotp.is.*;

public class HelloWorld extends Thread

 public static Service init (Service service)

 {

 Properties propConfig = service.getConfiguration () ;

 }

 public Service helloWorld (Service service)

 {

service.setOutputParameter ("Body", "Hello World!") ;

return service ;

 }

}

Integrating Software and Systems

Databases

Databases are integrated using JDBC drivers via the JDBC Outbound Adapter. This supports all major database products and many more. If you have a database and the corresponding JDBC driver, you can easily integrate it by

· Adding the appropriate Adapter configuration entry in the adapters.xml file in the conf directory

· Adding the corresponding Destination in the Service Store that will use this JDBC driver.

MySQL drivers are included in the distribution.

Mainframes

The Mainframe Outbound Adapter provides transactional integration for hosts systems like CICS and IMS. See the Mainframe Adapter section for more information.

Web Services

S-integrator reads WSDL service descriptions and works in conjunction with the SOAP Inbound Adapter to accept SOAP web service requests.

Listeners

1.1.30. TCP/IP

The TCP/IP Listener listens for and accepts TCP connections and hands off to Inbound Adapters it is bound to. The HTTP and SOAP Inbound Adapters use it.

1.1.30.1. IP Host and Address Banning

Host names and TCP/IP addresses that are to be blocked can be placed in their corresponding blocked files. These files can be configured in the TCP Listener or Inbound Adapters that use it like the HTTP and SOAP Inbound Adapters.

Inbound Adapters

1.1.31. HTTP Inbound Adapter

This adapter provides support for processing HTTP requests.

1.1.31.1. IP Host and Address Banning

Host names and TCP/IP addresses that are to be blocked can be placed in their corresponding blocked files. These entries override the TCP Listener's.

1.1.31.2. Content Filtering

This adapter allows for Content Filters to be added. An existing Virus Content Filter is provided for simple virus checking of some Nimda and Code Red viruses.

1.1.32. SOAP Inbound Adapter

This adapter provides support for processing SOAP requests via HTTP. It extends the HTTP Inbound Adapter (one of the few cases of inheritance you will find in S-integrator).

1.1.32.1. IP Host and Address Banning

Host names and TCP/IP addresses that are to be blocked can be placed in their corresponding blocked files. These entries override the TCP Listener's.

1.1.32.2. Content Filtering

Since this adapter uses the HTTP Inbound Adapter, it also uses the same content filtering mechanism.

Outbound Adapters

1.1.33. JDBC Outbound Adapter

JDBC drivers are specified in a Service Store Destination with the corresponding JDBC Outbound Adapter. Additionally, there must be a corresponding Remote Service description entry in the Services file within that Service Store.

1.1.34. Mainframe Outbound Adapter

The Mainframe Adapter is written in 'C' and is available only for Windows platforms and requires an APPC gateway such as Microsoft Host Integration Server (HIS), the older Microsoft SNA Server or the IBM equivalents for the Windows platform.

Protocol Support

1.1.35. SMTP

SMTP is currently supported via the SmtpClient Class.

1.1.36. FTP

FTP is currently supported via the FtpClient Class.

Deploying Services

Initial Deployment

Services are initially deployed by performing the following steps:

· Place service Java class files into the Service Store's Svc-inf/classes directory and the Java JAR files into the Service Store's Svc-inf/lib directory.

· Add a a service description entry into a service description file and place that file in the Service Store's Svc-inf directory. These can be in the form of native S-integrator XML service description entries or WSDL entries.

Hot Deployment

Atomic Services can be hot deployed by simply replacing the Java class and/or JAR files in the Service Store. The new class will be used the next time the service is called.

System Services

Authentication, Registration and Session Management

Future

1.1.37. Authentication

Future

1.1.38. Registration

Future

1.1.39. Session Management

Future

1.1.40. Service Package Authorization

Future

1.1.41. Service Authorization

Future

1.1.42. Content Authorization

Future

Authorization

Future

Content Management

Future

Configuration File Management

Future

Administration

Future

1.1.43. Server Health

Future

1.1.44. Server Management

Future

1.1.45. Scheduling

Future

1.1.46. Service Management

Future

1.1.47. Mail

Future

1.1.48. Web Server

Future

Client API

Future

Interface

Future

Sample

Future

Copyright 2003 Indigo Technology Partners, Inc.

